The 4.1 protein coracle mediates subunit-selective anchoring of Drosophila glutamate receptors to the postsynaptic actin cytoskeleton.
نویسندگان
چکیده
Glutamatergic Drosophila neuromuscular junctions contain two spatially, biophysically, and pharmacologically distinct subtypes of postsynaptic glutamate receptor (GluR). These receptor subtypes appear to be molecularly identical except that A receptors contain the subunit GluRIIA (but not GluRIIB), and B receptors contain the subunit GluRIIB (but not GluRIIA). A- and B-type receptors are coexpressed in the same cells, in which they form homotypic clusters. During development, A- and B-type receptors can be differentially regulated. The mechanisms that allow differential segregation and regulation of A- and B-type receptors are unknown. Presumably, A- and B-type receptors are differentially anchored to the membrane cytoskeleton, but essentially nothing is known about how Drosophila glutamate receptors are localized or anchored. We identified coracle, a homolog of mammalian brain 4.1 proteins, in yeast two-hybrid and genetic screens for proteins that interact with and localize Drosophila glutamate receptors. Coracle interacts with the C terminus of GluRIIA but not GluRIIB. To test whether coracle is required for glutamate receptor localization, we immunocytochemically and electrophysiologically examined receptors in coracle mutants. In coracle mutants, synaptic A-type receptors are lost, but there is no detectable change in B-type receptor function or localization. Pharmacological disruption of postsynaptic actin phenocopies the coracle mutants, suggesting that A-type receptors are anchored to the actin cytoskeleton via coracle, whereas B-type receptors are anchored at the synapse by another (yet unknown) mechanism.
منابع مشابه
Staufen targets coracle mRNA to Drosophila neuromuscular junctions and regulates GluRIIA synaptic accumulation and bouton number
The post-synaptic translation of localised mRNAs has been postulated to underlie several forms of plasticity at vertebrate synapses, but the mechanisms that target mRNAs to these postsynaptic sites are not well understood. Here we show that the evolutionary conserved dsRNA binding protein, Staufen, localises to the postsynaptic side of the Drosophila neuromuscular junction (NMJ), where it is re...
متن کاملPostsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction.
Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila t...
متن کاملMuscle Dystroglycan Organizes the Postsynapse and Regulates Presynaptic Neurotransmitter Release at the Drosophila Neuromuscular Junction
BACKGROUND The Dystrophin-glycoprotein complex (DGC) comprises dystrophin, dystroglycan, sarcoglycan, dystrobrevin and syntrophin subunits. In muscle fibers, it is thought to provide an essential mechanical link between the intracellular cytoskeleton and the extracellular matrix and to protect the sarcolemma during muscle contraction. Mutations affecting the DGC cause muscular dystrophies. Most...
متن کاملCPG2 Recruits Endophilin B2 to the Cytoskeleton for Activity-Dependent Endocytosis of Synaptic Glutamate Receptors
Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalizat...
متن کاملDrosophila coracle, a member of the protein 4.1 superfamily, has essential structural functions in the septate junctions and developmental functions in embryonic and adult epithelial cells.
Although extensively studied biochemically, members of the Protein 4. 1 superfamily have not been as well characterized genetically. Studies of coracle, a Drosophila Protein 4.1 homologue, provide an opportunity to examine the genetic functions of this gene family. coracle was originally identified as a dominant suppressor of EgfrElp, a hypermorphic form of the Drosophila Epidermal growth facto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 28 شماره
صفحات -
تاریخ انتشار 2005